
CONSTRAINT-BASED BRITTLENESS ANALYSIS OF TASK NETWORKS
FOR PLANETARY ROVERS
Virtual Conference 19–23 October 2020

Tiago Stegun Vaquero, Steve Chien, Jagriti Agrawal

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive Pasadena, CA 91109 USA
E-mail: tiago.stegun.vaquero@jpl.nasa.gov , steve.a.chien@jpl.nasa.gov, jagriti.agrawal@jpl.nasa.gov

ABSTRACT

We propose a new method to analyze brittleness of
task networks with respect to not only temporal but
any arbitrary set of constraints. The method allows the
detection and enumeration of activities that, with mod-
est duration variation, violate the target constraints.
1 INTRODUCTION

Temporal plans for agents that must deal with execu-
tion uncertainty must be designed for execution ro-
bustness. Planetary rovers, due to their interaction
with a hard-to-predict environments match this type of
problem. Planetary rover plans must be carefully de-
signed and generated on the ground to allow success-
ful execution of tasks while meeting all the required
timing constraints, energy constraints, and being safe
at all times. Accurately determining some of those tim-
ing constraints a priori, specially activity duration, is
quite challenging though due to the natural unpredict-
ability of the environment [1][2].

The traditional approach used in planetary rover mis-
sions is to add significant temporal margin for execu-
tion robustness; however, this can hamper rover effi-
ciency [3]. Ideally we would use task networks that not
only are consistent and maximize the vehicle's produc-
tivity, but that are also robust to unexpected events and
delays. As a corollary, it is therefore critical to evalu-
ate robustness and identify activities and (temporal
and resource) constraints that cause brittleness to tem-
poral unpredictability.

This paper addresses the challenge of identifying the
activities that are most sensitive to temporal unpredict-
ability, in a dynamic scheduling setting, given a set of
user-specified constraints. We propose a new method
to analyze the brittleness of task networks with respect
to not only temporal but any arbitrary set of constraints
(including resources). It allows the detection and enu-
meration of activities that, with modest task execution
duration variation, violate the target set of constraints
and make the success of execution no longer guaran-
teed. In this method, we introduce a metric for meas-
uring an activity's brittleness - defined as the degree of
acceptable deviation from its nominal duration - and

describe how that measurement is mapped to task net-
work structure. Complementary to existing work on
temporal robustness analysis which informs how
likely a task network is to succeed or not under con-
trollability constraints, the proposed analysis and met-
ric not only generalized robustness analysis to any ar-
bitrary set of constraints (herein temporal controllabil-
ity and energy resource constraints), but it also goes
deeper to pinpoint the sources of potential brittleness.
We develop an analyzer that helps human designers
and/or automated task network generators (e.g. sched-
ulers/planners) focus on and address sources of unde-
sirable brittleness. For the latter, the analyzer proposes
temporal constraint relaxations (e.g. changing start
time or execution time windows of certain activities)
when the brittleness metric values are not satisfactory.
We apply the approach to a set of task networks in de-
velopment for NASA's next planetary rover and pre-
sent common patterns that are sources of brittleness.
The proposed technique and tools are currently under
evaluation for potential use supporting operations of
the Mars 2020 rover.

2 BACKGROUND

We study brittleness analysis in the context of
NASA’s next planetary rover, the Mars 2020
(M2020) rover operations. We derive task networks
from M2020 sol types [4]. In what follows we de-
scribe the main elements of a rover task network
and existing robustness metrics.

2.1 2020 Rover’s Task Networks

Based on [2, 5], we define a M2020 sol type task
network as a tuple TN = áA, H, SOCinit, SOCmin,
SOCmax, SOChandoverñ. The main element of our task
network refers to a set of rover activities
A={aiáTCi,Di,eiñ ... anáTCn,Dn,enñ}, where: a) TCi is
the temporal constraints tuple áTCi,dur, TCi,est, TCi,lst,
TCi,letñ referring to the nominal duration, earliest start
time, latest start time and latest end time respectively
(the duration of planetary rover activities can be quite
unpredictable [3] and TCi,dur is expected be similar);
b) Di is the set of the activity’s dependency con-
straints in the form of aj → ak, i.e. aj depends on ak;

© 2020. California Institute of Technology. Government sponsor-
ship acknowledged.

c) ei is the rate at which the consumable resource en-
ergy is consumed by activity ai.

All activities in A must be scheduled (no disjunction is
considered). In addition to set A, our task network is
defined by: d) H is the execution horizon (all activities
have to finish by then); e) SOCinit is the initial state of
charge (SOC) of the rover’s battery at the start of task
network execution; f) SOCmin is the global minimum
state of charge that is required at all times during exe-
cution; g) SOCmax is the global maximum state of
charge during execution (it never exceeds it during
charging (sleep mode)); h) SOChandover is the handover
minimum state of charge that is required at the end of
the execution.

2.2 Robustness Analysis

State-of-the-art analysis has focused on quantifying
how robust a temporal constraint network is with re-
spect to disturbance (e.g., unforeseen delays). In [6, 7],
robustness is computed by measuring a Simple Task
Network (STN) flexibility: a metric that quantifies the
aggregate slack in the simple temporal network. In
[8], an STN is represented as a polyhedron and the
flexibility linked to its volume. Although useful,
it is hard to judge from the above metrics if the amount
of flexibility is enough in certain unpredictable envi-
ronments – with no uncertainty being consider it might
not imply robustness [9]. Moreover, the above meth-
ods do not inform where more flexibility is needed if
the metric value is below the acceptable range.

In [9] robustness is defined as the greatest level of dis-
turbance (delay) on an STN with Uncertainty (STNU)
at which it is still successfully executed. In this
method, computing robustness is framed as a linear
constraint optimization problem to compute the maxi-
mum deviation from the nominal case on any activity
at which the STNU is dynamically controllable. If a
Probabilistic STN (PSTN) is used instead, the level of
disturbance at which the schedule becomes no longer
dynamically controllable equates to the probability of
it breaking during execution. The same constraint op-
timization problem framework applies in the probabil-
istic case, in which the objective is to maximize the
probability that all uncertain activity durations fall in-
side the chosen bounds. The robustness metric in this
case would be a probability of execution success.

In [10], the degree of dynamic controllability (DDC)
of a STNU is used a robustness metric. DDC is de-
fined as the proportion of STNU contingent edges
realizations in which the temporal network remains
dynamically controllable. A parallel could be done
wrt PSTN, in which the DDC would rather be defined

in terms of probability mass of the respective control-
lable realizations.

In [11, 12], robustness is also quantified as the likeli-
hood that a PSTN will be executed successfully. The
approach assumes no correlation between the tem-
poral constraints, and therefore, suffers overestima-
tion. To account for interrelation, [12] propose a
Monte Carlo approach in which the execution of a
PSTN is simulated multiple times and the duration of
contingent/uncertain activities is sampled as they are
executed. The ratio of successful executions corre-
sponds to the robustness value.

Similar to the likelihood of success, the risk of
violating any temporal constraints in a PSTN can also
be interpreted as a robustness metric. Approaches like
risk-bounded scheduling [13] guide the search for a
temporal plan based on a user-specified risk bound
(e.g., 5% risk). In [14], a risk-minimization ap-
proach is used to generate a schedule under strong con-
trollability constraints, in which the risk value would
indicate how robust the PSTN is.

The aforementioned metrics, success probabilities, de-
gree of dynamic controllability and risk bounds, pro-
vide an intuitive way to evaluate if an task network (in
the form or a STNU or PSTN) execution is likely to
succeed and whether the entire network is brittle to
disturbance or not (note that only temporal constraints
are considered in the aforementioned robustness
metrics). However, it is hard to determine potential
sources of brittleness when those metrics (which
boils down to a single output number) do not meet a
desirable threshold. Those cases bring interesting and
important questions: (a) What activities in particular
are culminating in low robustness? (b) What activities
and constraints (temporal and/or resource) are most
brittle to delays so that one might try to address spe-
cific issues in task network? (c) What constraints are
dominantly more brittle to delays? (d) What are the
possible ways we can change or relax some of the tem-
poral constraints to bring activities’ and the task net-
work’s brittleness values to an acceptable level? In this
paper we propose methods to address these questions.

3 TASK NETWORK BRITTLENESS ANALY-
SIS

In this work, we represent uncertainty by associ-
ating a mean (μ) and a standard deviation, sigma (σ)
(e.g. from a normal distribution), to every contin-
gent/uncertain activity’s duration in the task net-
work. We call the set of contingent activities AC
and the non-contingent/controllable activities AR,

where A=AC ∪	 AR and herein TCi = áμi,σi, TCi,dur,
TCi,est, TCi,lst, TCi,letñ.

We propose a constraint-based brittleness analysis ap-
proach for task networks with uncertainty in which,
given a set of user-specified brittleness constraints
BC={bcl...bck}, we enumerate contingent activities,
from most brittle to least brittle, and inform the causes
of potentially undesirable brittleness levels. In a nut-
shell, we use a ceteris paribus approach (i.e. “all else
unchanged”), leveraging [15], to analyze the brittle-
ness of each contingent activity individually against
BC by exploring different disturbance scenarios and
evaluating which brittleness constraints are violated.
We then overlay that information onto the task
network structure to analyze why certain activities
are more brittle than others.

3.1. Ceteris Paribus Analysis

In the core of the brittleness analysis, we introduce a
ceteris paribus approach to measure the degree of dis-
turbance (deviation to the mean) at which each target
contingent activity ai∈AC makes the task network vio-
late one or more constraints in BC. For each activity,
we measure its maximum duration deviation from the
mean, while fixing the uncertainty (deviation) of all
other remaining contingent activities to a certain level
(called a ceteris paribus scenario).

Maximum deviation is related to a maximum sigma
multiplier, 𝑧!", that makes the task network violate one
or more brittleness constraints BC, where the max
duration bounds for that particular activity would be
(ti_end − ti_start) = [μi−𝑧!"×σi , μi+𝑧!"×σi] and the set of
violated constraints would be 𝐵𝐶!"⊆	BC for a particu-
lar ceteris paribus scenario. The intuition here is: the
smaller the 𝑧!", the more brittle the activity is in the
network. In this work, we use the sigma multiplier
𝑧!" as our central measure of brittleness and the means
to enumerate brittle activities. We use the terms ‘de-
gree of brittleness’ or ‘brittleness level’ interchangea-
bly to refer to that measure. In what follows we de-
scribe the proposed analysis algorithm to compute 𝑧!".

Algorithm 1 is designed to order activities by their
degree of brittleness. It is composed of two main
steps: Step 1 detects the single overall sigma mul-
tiplier (applied to all the contingent activities edges
at once) that makes the network TN violate the con-
junction of constraints in BC (i.e., the BC check). That
overall sigma multiplier is used in the second step to
created specific ceteris paribus scenarios when ana-
lyzing each individual activity. In line 2, the called
function adds uncertainty around the mean μ of all ac-
tivities duration by applying a single increasing overall

Algorithm 1: Ceteris Paribus Brittleness Analysis
Input: TN, BC, Fx
Output: a list of contingent activities ordered by 𝑧!" along with their re-
spective violated brittleness constraints.
1

2

3
4

5
6
7
8
9

multipliers ← {};
// Step 1
xu ← computeOverallSigmaMultiplier(TN,BC);
// Step 2
Y = xu×Fx; // Sets fixed y multiplier
for ai ∈	AC do
 𝑧!",	𝐵𝐶!" ← computeActivitySigmaMultiplier(ai,y,TN,BC);
 multipliers.append((ai,	𝑧!",	𝐵𝐶!"));
end
ordered_multiplier ← order(multipliers);
return ordered_multiplier

sigma multiplier x (0 ≤ x ≤ ∞) to all contingent activi-
ties, generating a task network TN with new (larger)
activities duration bounds. At each increment of x we
check if the resulting task network satisfy all the brit-
tleness constraints in BC. The (breaking) overall sigma
multiplier that makes TN violate BC is set to be xu.

The most important process of the Algorithm 1 occurs
in Step 2. Here we start by setting a fixed sigma mul-
tiplier y (0 ≤ y < xu) in line 3 that will be used to specify
the ceteris paribus scenario (i.e., the uncertainty level
of all the other contingent activities) when analyzing a
particular contingent activity ai. The algorithm input
float Fx is used to specify y as a fraction of xu (0≤ Fx
<1). As we will see later, y = 0 (by Fx= 0) is a special
case of the analysis. In lines 4-7, for each activity ai ∈	
AC we compute its sigma multiplier 𝑧!" and 𝐵𝐶!", and
append the tuple (ai,	𝑧!",	𝐵𝐶!") to the multipliers re-
sults. The function called in line 5 computes starts by
first creating an new TN in which all other contingent
activities aj ∈	AC (j≠i) have their contingent durations
set to (tj_end−tj_start) = [μj−y×σj, μj+y×σj]. We then
search for the maximum sigma multiplier 𝑧!" applied
to ai’s duration bounds that violates one or more ele-
ments of BC. Finally, every tuple (ai,	𝑧!",	𝐵𝐶!") is
stored and later ordered by the value 𝑧!" (line8).
The ordered list of contingent activity is then returned,
with each activities brittleness value and the corre-
sponding violated constraints.

A special case of the analysis in Algorithm 1 is
when the fixed sigma multiplier y = 0 in Step 2
(i.e., all other contingent activities aj have duration
set to be exactly the nominal case, (tj_end − tj_start) =
[μj, μj]). In that case, we can determine the max-
imum temporal disturbance allowed for each activity,
which sets the upper bound of each 𝑧!"(𝑧!

",)*+). Figure
1 shows an example of ranking of activity brittle-
ness based on 𝑧!" from one of the studied M2020
task networks with 20 rover activities, in which we
consider three brittleness constraints in BC: bcDC is
the dynamic controllability constraint; bcSOCmin is the
global minimum SOC constraint; and bcSOChandover is
the handover minimum SOC constraint. Here we

Figure 1: Example of brittle activities ranking.

use 1/𝑧!" values to make the brittleness representation
more intuitive: the higher 1/𝑧!", the more brittle the ac-
tivity is. Note that the chart in Figure 1 can be mapped
to maximum delays (𝑧!"×σi) providing actual timing
information. The proposed algorithm can inform de-
signers or planners what activities are most brittle,
which brittleness constraints are dominantly more brit-
tle, and which of the activities might need further in-
spection if they do not meet a desirable brittleness
level. It is worth noting that varying the fixed sigma
multiplier y can provide useful information about in-
terrelated contingent activities. If the resulting values
of 𝑧!" do not change with y variation, then it shows
that activity ai is quite independent of other activities
duration and uncertainty (or their effect is insignifi-
cant). If 𝑧!" value does change with varying y, then ai
is interrelated to other activities uncertainty.

3.2 Mapping Brittleness to Task Network Structure

We implement a visualization tool for representing the
outputs of the aforementioned analysis over a tem-
poral network graphical representation (e.g., as a
STNU or a PSTN). The objective is to help a designer
to identify brittleness sources. In addition to the tem-
poral constraints and means and sigma, we provide
the following information for each activity ai in the
task network visual representation: brittleness rank;
𝑧!"; 𝐵𝐶!", maximum delay (𝑧!"×σi); specified execution
time window; inferred execution time window and
start time window (using Floyd-Warshall’s all-pair
shortest path algorithm); and dependencies. By visual
inspection or structure analysis, designers and plan-
ners can study the causes of brittleness given the
parameters above while tracing the associated tem-
poral constraints on the task network structure.

4 ADDRESSING UNDESIRABLE BRITLE-
NESS LEVELS

In this section, we propose an advisory system that
suggests temporal constraint relaxations (e.g.,

decrease earliest start time of activity adrive by 300 time
units) that meets user-specified brittleness measure
thresholds for a set of target activities in the ceteris
paribus analysis - usually those activities that were
found to be problematically brittle. If the suggestion
is not satisfactory from the user/planner’s perspective,
the system would generate the next best relaxation so-
lution. Herein, we focus on temporal constraint relax-
ation suggestions only. Moreover, the proposed sys-
tem handles only the brittleness constraint bcDC. Han-
dling multiple constraints, specifically resources, is
left for future work.

Our task network relaxation problem addressed by the
proposed advisory system refers to RP = áTN, ABrittle,
RATC, BMTH, 𝑏𝑚,-./"01

23 ñ, where: TN=áA, Hñ is our task
network, without resource constraints entirely; ABrittle
is the set of target activities, ABrittle⊆AC, that brittle val-
ues do not meet an acceptable value and one wants to
make sure they are in the brittleness measure accepta-
ble range; RATC is a list of relaxable activities’ tem-
poral constraints (e.g. earliest/latest start times); BMTH
is a mapping between target activities ai ∈	ABrittle to a
brittleness measure threshold 𝑏𝑚!

23 - herein 𝑏𝑚!
23 re-

fers to either an acceptable maximum sigma multiplier
𝑧!23 or an acceptable confidence level 𝑝!23 (probabil-
ity mass between lower and upper bounds around the
mean) in case of normal distribution duration models;
and 𝑏𝑚,-./"01

23 is the default brittleness measure
threshold for all non-target activities. The output of
our system is a set of relaxations, RTC, that maps a sub-
set of RATC to increments or decrements of time. In the
aforementioned example on activity adrive the solution
would look like RTC ={𝑟𝑎,4!5-,-6127 → −300} (subscript
drive,est refers to earliest start time constraint of activ-
ity adrive).

Algorithm 2 provides the pseudo code for the proposed
advisory system. The first step (line 2) corresponds to
the translation of the input TN to a STNU, generating
TNSTNU. The resulting STNU has to be dynamic uncon-
trollable otherwise no relaxation is needed. Given
TNSTNU, we then compute a solution for the relaxation
problem under the dynamic controllabitity constraint
(line 3). Here we use the Conflict-Directed Relaxation
with Uncertainty (CDRU) algorithm [9] to solve a lin-
ear program optimization problem over the uncontrol-
lable STNU. CDRU finds a least-cost relaxation of the
temporal constraints in RATC that makes TNSTNU dy-
namic controllable. Herein, relaxing refers to tighten-
ing or loosening temporal constraints edges. Finally,
Algorithm 2 allows an interactive process of generat-
ing the next best solution (lines 4-6), as long as one
exists. This is possible thanks to search_pointer that
stores the CDRU’s search state and learned conflicts

Algorithm 2: Brittleness Level Guided Task Network Relaxation
Input: A task network temporal relaxation problem, RP
Output: a set of relaxations, RATC
1

2

3

4
5
6
7

RTC←{};
// translate task network to its corresponding STNU
TNSTNU ← generateSTNU(TN, ABrittle, RATC, BMTH, 𝑏𝑚#$%&"'(

)*);
// compute relaxation
search_pointer,RTC ← computesRelaxationSolution(TNSTNU,RATC);
// provide next best solution if required
while User needs next solution and one exists do
 RTC ← search_pointer.nextSolution();
end
return RTC

to keep computing solutions. We believe this provides
a powerful tool for designers and planners to ex-
plore different options of temporal constraints relax-
ations and therefore ways to bring the task network to
the acceptable brittleness level.

5 EXPERIMENTAL RESULTS

5.1 Setup

We run the constraint-based brittleness analysis using
a set of nine M2020 sol type task networks. These net-
works are representative of what is currently being in-
vestigated to develop an onboard scheduler for the
M2020 rover [2]. Sol types generally contain between
20 and 50 activities, such as driving, conducting re-
mote science, and taking images. Table 1 show some
of the main properties of each task (i.e. number of ac-
tivities and dependencies, as well as the resulting
number of nodes and edges when translating it to an
STNU).

Since the M2020 rover is not yet in operations, accu-
rate models of activity duration variance are not yet
available. For the purpose of this study, we use an es-
timate of nominal activities duration as their mean
value (based on conservative estimates from scien-
tists) and select a sigma for each activity randomly as
a fraction of the mean. With respect to energy con-
straints, we use conservative estimate values for activ-
ity’s energy consumption rates (ei), as well as es-
timate of SOCinit, SOCmin, SOCmax, and SOChandover
based on target operation requirements. In this
work, we focus on the three brittleness constraints BC:
bc1=bcDC, bc2=bcSOCmin and bc3=bcSOChandover.

For each task network, we perform the following: 1)
run Algorithm 1 in the special case y = 0 to identify
the upper bound 𝑧!

",)*+ and plot the brittleness rank-
ing; and 2) we use the mapping tool to generate
graphical representation (STNU-like) of the task
network with the added layer from the brittleness anal-
ysis data. Finally, we select a representative task net-
work from the analysis results to run Algorithm 2 and
generate a temporal relaxation solution to improve
temporal brittleness, considering constraint bcDC only.

Table 1: Studied M2020 sol types task networks

with their respective properties

Table 2: Summary of brittleness analysis results

5.2 Results

Table 2 shows the overall sigma multiplier 𝑥!" for each
task network and the maximum values of the target
sigma multiplier 𝑧!

",)*+to illustrate the large range of
brittleness in the set. Minimum values of 𝑧!

",)*+ (most
brittle activities) matches the value of 𝑥!", except
TN 7 where 𝑧!,:!;

",)*+= 0.095. These results show a
brittle set of task networks, given the low 𝑥!", that
is: with a small variation of one key activity’s duration
the task network violates at least one of the brit-
tleness constraints. The low sigma multipliers reflects
on the high value of the probability of falling beyond
the 𝑧!

",)*+values in the activity delay case only
(1−𝑝!

",)*+), showing a high risk of constraint violation.
Table 2 also shows dynamic controllability (bc1) as the
dominant brittleness constraint.

Plotting brittleness ranking, like in Figure 1, provides
an effective tool for highlighting the fragile activities.
Figure 1 shows the case of TN 8 where activity 3 is the
most brittle, and largely more brittle than the other
activities. The results from the ranking and the map-
ping approach show two main sources/cases of tem-
poral brittleness in the studied set of M2020 task net-
works: Case 1 represents brittleness due to a tight user-
specified execution window; and Case 2 represents
brittleness due to a dependency chain. Activities in
Case 1 would usually have no temporal dependency to
other activities, but a tight window between the earli-
est start time and the latest end time. Case 2 is man-
ifested by clear temporal/ordering dependencies in
the graph representation. In what follows we use task
network TN 2 as our representative example since
it covers the two aforementioned cases.

Figure 2 represents a portion of the results from the
mapping tool in the TN 2 case. The brittleness of Ac-
tivity 9 – a Long Drive activity – in Figure 2 (a) is
primarily attributed to its tight execution window

Figure 2: Brittleness due to (a) tight user-specified
execution window (Case 1) and (b) to dependen-

cies (Case 2) in TN 2.

compared to its large nominal duration (Case 1). Each
activity may have a cutoff time to ensure that the ac-
tivity does not interfere with another higher priority
activity. If the activity runs past its cutoff time, then it
is aborted and the activity fails to be scheduled. Even
though the long drive has no dependencies or resource
contention with any other activity, its nominal dura-
tion is 13044 sec (3hr, 37min) while the difference be-
tween its earliest allowed start time and its cutoff time
is only slightly longer at 13563 sec (3hr, 46min).
Then, assuming the activity starts as early as it can, if
it runs longer than expected by even 9 minutes, it will
violate its cutoff time and fail to be scheduled. Due to
the lack of flexibility given by its execution window,
even a small fluctuation from its nominal duration will
result in an inconsistent schedule. The most common
example of an activity that is tied to a tight execution
window in our study is one which has a lighting re-
quirement from science which translates into a tight
execution window.

The 7 activities in Figure 2 (b), that cannot occur
concurrently due to hardware resource contention (all
use the Remote Sensing Mast (RSM)), shows a case of
Case 2. The first three MastcamZ activities (Activi-
ties 23, 24 and 20) are imaging activities. These
activities have execution windows that overlap with
those of the next four activities, which all use the
Navcam (cameras) in addition to the RSM. Of these
four activities, the first two create atmospheric moni-
toring movies (Activities 26 and 22) while the second
two (Activities 25 and 21) generate movies of dust
devil activity. These four activities have the same ex-
ecution window and must all end by the same time and
also share part of their execution windows with the
previous three activities. Because all of these activities
use the same hardware and have highly overlapping
execution windows, they must be placed sequentially.
As a result, they become fairly constrained in where
they can be scheduled, making the risk of failure if
these activities run long quite high.

Understanding which activities are more brittle and
why has important use cases. For example, such

analysis can assist scientists in pinpointing activities
that have a high risk of failure and help them under-
stand which constraints might need to be reassessed.

In order to illustrate the proposed advisory system,
we use task network TN 2 which contains both
common brittleness cases. The constraint-based brit-
tleness analysis highlights two highly brittle activ-
ities under Case 1: Activities 9 and 4. It also highlights
three activities in Case 2: Activities 25, 26 and 22
(Figure 2 (b)). Let us focus on these five most brittle
activities. We can extract the probability mass 𝑝!" that
refers to a symmetric bound around the mean
(confidence interval): 𝑝<"=0.04, 𝑝="=0.06, 𝑝>?" =0.84,
𝑝>@" =0.90 and 𝑝>>" =0.92. Let’s use these values as
our undesirable levels of brittleness, and the starting
point of our relaxation approach. We then set the fol-
lowing task network temporal relaxation problem RN
as the input to Algorithm 2: TN 2 is the target input
TN; ABrittle={a9, a4, a25, a26, a22}; RATC is set to be the
earliest and latest start time of all activities in TN 2,
including the five most brittle activities; BMTH is set
to be the following target brittleness measure, i.e. the
target confidence levels for the five target activities,
BMTH = {𝑏𝑚<

23=0.50, 𝑏𝑚=
23=0.50, 𝑏𝑚>?

23=0.95,
𝑏𝑚>@

23=0.95, 𝑏𝑚>>
23=0.95}; and finally, no require-

ments are set for 𝑏𝑚,-./"01
23 .

 With that input, Algorithm 2 will suggest the fol-
lowing solution RTC: 𝑟𝑎<27→ −5371; 𝑟𝑎=27→ −381;
𝑟𝑎>@27→ −1866; 𝑟𝑎>?27→ −976; 𝑟𝑎>>27→ −151; 𝑟𝑎>+27→
−816; 𝑟𝑎>A27→ −1056. This solution indicates that a de-
signer should decrease the earliest start time of ac-
tivities a9, a4, a26, a24, a22, a20 and a23 by the indicated
amount. It is interesting to see that the system is
relaxing not only the temporal constraints associated
with the five most brittle activities, but also two addi-
tional activities that play a role in the dependency
chain shown in Figure 2 (b). Activities 20 and 23 are
the most brittle activities on the left hand side time
window, showing the option of making room for ac-
tivities in the right hand side time window of Figure 2
(b).

If we apply the above suggested relaxations to TN 2,
we can run the constraint-based brittleness analysis
again and analyze impact on the brittleness measures.
In doing so, the target confidence levels are meet
properly and the brittleness of both the target five ac-
tivities and the whole task network is reduced to the
acceptable values. We believe that this capability
can be quite powerful and useful not only for human
planners but also for (offline) automated planners in a
generated and test/analyze setting.

5 CONCLUSION

In this paper we presented a new approach for meas-
uring and analyzing the brittleness of a temporal plan
based on a set of user-specified constraints, as well its
application to planetary rovers. We introduced a new
metric to measure brittleness of activities in the plan
and algorithms to help designers/planners identify the
most critical activities that violated the set of user-
specified brittleness constraints (herein dynamic
controllability constraint, global minimum state of
charge constraint, and handover minimum state of
charge constraint) with small variations to their dura-
tion. This analysis can be overlapped onto a STNU
representation of the plan to augment the understand-
ing of the sources of brittleness and the temporal con-
straints associated. We also present a new advisory
system that is capable of suggesting temporal con-
straint relaxation to adjust the brittleness measure to
an acceptable level. We showed results from a se-
lected set of Mars 2020 planetary rover task networks
in which two general cases for activity brittleness
emerged, mapping to different ways to address
them. We advocate that identifying and fixing such
key brittle activities is paramount in planetary rover
where large uncertainty exists in the environment.

Acknowledgement

The research was carried out at the Jet Propulsion La-
boratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Ad-
ministration.

References

[1] G. Rabideau, E. Benowitz (2017) Prototyping an
onboard scheduler for the Mars 2020 rover. Interna-
tional Workshop on Planning and Scheduling for
Space (IWPSS), Pittsburgh, PA.

[2] W. Chi, S. Chien, J. Agrawal, G. Rabideau,
E. Benowitz, D. Gaines, E. Fosse, S. Kuhn, J.
Biehl (2018) Embedding a scheduler in execution
fora planetary rover. International Conference on
Automated Planning and Scheduling (ICAPS), Delft,
Netherlands.

[3] D. Gaines, G. Doran, H. Justice, G. Rabideau, S.
Schaffer, V. Verma, K. Wagstaff, V. Vasavada, W.
Huffman, R. Anderson, R. Mackey, T. Estlin (2016)
Productivity challenges for mars rover operations: A
case study of mars science laboratory operations,
Technical Report D97908, Jet Propulsion Laboratory.

[4] Jet Propulsion Laboratory (2018) Mars 2020 rover
mission, https://mars.nasa.gov/mars2020.

[5] J. Agrawal, W. Chi, S. Chien, G. Rabideau, S.
Kuhn, D. Gaines (2019) Enabling limited resource-
bounded disjunction in scheduling. International
Workshop on Planning and Scheduling for Space
(IWPSS) Berkeley, California, pp. 7–15.

[6] A. Cesta, A. Oddi, S. F. Smith (1998) Profile-based
algorithms to solve multiple capacitated metric sched-
uling problems, International Conference on Artificial
Intelligence Planning Systems (AIPS), pp. 214–223.

[7] M. Wilson, T. Klos, C. Witteveen, B. Huisman
(2014) Flexibility and de-coupling in simple temporal
networks, Artificial Intelligence 214, 26–44.

[8] A. Huang, L. Lloyd, M. Omar, J. C. Boerkoel
(2018) New perspectives on flexibility in simple
temporal planning. Inter-national Conference on Au-
tomated Planning and Scheduling (ICAPS), Delft,
Netherlands, pp. 123–131.

[9] J. Cui, P. Yu, C. Fang, P. Haslum, B. C. Williams
(2015) Optimising bounds in simple temporal net-
works with uncertainty under dynamic control-lability
constraints. International Conference on Automated
Planning and Scheduling (ICAPS) pp. 52–60.

[10] S. Akmal, S. Ammons, H. Li, J. C. Boerkoel
(2019) Quantifying Degrees of Controllability in Tem-
poral Networks with Uncertainty, International Con-
ference on Automated Planning and Scheduling
(ICAPS).

[11] I. Tsamardinos (2002) A probabilistic approach
to robust execution of temporal plans with uncertainty.
Methods and Applications of Artificial Intelligence,
pp. 97–108.

[12] J. Brooks, E. Reed, A. Gruver, J. C. Boerkoel
(2015) Robustness in probabilistic temporal planning,
AAAI Conf. on Artificial Intelligence, 3239–3246.

[13] C. Fang, P. Yu, B. C. Williams (2014) Chance-
constrained probabilistic simple temporal problems.
AAAI Conf. on Artificial Intelligence, 2264–227.

[14] P. Santana, T. Vaquero, C. Toledo, A. Wang,
C. Fang, B. Williams (2016) PARIS: A polynomial-
time, risk-sensitive scheduling algorithm for probabil-
istic simple temporal networks with uncertainty.
International Conference on Automated Planning and
Scheduling.

[15] T. Vaquero, S. Chien, J. Agrawal, W. Chi, T.
Huntsberger (2019) Temporal Brittleness Analysis
of Task Networks for Planetary Rovers. Interna-
tional Conference on Automated Planning and Sched-
uling (ICAPS’19).

